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Abstract

Two-dimensional thermocapillary-driven flow in a horizontal cavity of large aspect ratio is considered. Of particular
interest is the asymptotic matching between the known parallel core flow solution and the non-parallel flow near the
ends of the cavity. The influence of the end regions on the core flow is described by the superposition of spatial dis-
turbances to the core flow solution. The stability analysis of this perturbed state leads to an eigenvalue problem for the
complex wave number of the disturbances. The end flow structures are related to the nature of the lowest eigenvalue:
when purely real it describes a boundary layer regime whereas a non-vanishing imaginary part reveals the existence of
periodic structures known as recirculation rolls or eddies. It is found that, depending on the Prandtl number value, Pr,
recirculation eddies can exist either near the hot wall (P> 1) or the cold wall (Pr < 1). Our results provide a direct
interpretation to the different behaviors observed in previous experimental and numerical studies. © 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Thermocapillary driven flows have received an in-
creasing attention during the past several years, es-
pecially because of their importance in material
processing technologies, such as semiconductors crystal
growth from the melt. The dynamics observed in ap-
plications are very complex and fundamental studies
have dealt with a simplified geometry where the under-
lying physical mechanisms are easier to track.

We are presently interested in flows developing in a
rectangular cavity filled with a fluid whose top surface
open to ambient air has surface tension acting on it. A
horizontal temperature gradient is applied, by differen-
tially heating two of the opposite vertical walls confining
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the fluid laterally. Experiments conducted in this con-
figuration differ by the extent of the heated sidewalls,
being either longer [1,2], or shorter [3,4], than the width
between them. Whatever the length of the heated walls
is, the primary flow is considered as mostly two-di-
mensional and sensitivity to the geometry only manifests
when instability occurs in the system. Transverse dis-
turbances are preferentially observed when the differ-
entially heated walls have a short extent while
longitudinal or oblique disturbances are only seen in the
opposite situation. In a rectangular cavity with equal
length and width, Braunsfurth and Homsy [5] have ob-
served a novel oscillatory flow arising as a secondary
instability after the primary steady longitudinal rolls.
Most of the theoretical studies on thermocapillary-
driven flows have been concerned with the temporal sta-
bility analysis of plane-parallel flows in an infinite hori-
zontal layer [6-10]. However, the approximation of a
plane-parallel flow is only valid in the core region far from
the vertical walls confining the fluid laterally. Indeed,
numerical and experimental studies revealed that the side
walls can strongly distort the plane-parallel thermocap-
illary flow, even below the threshold for onset of
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Nomenclature

a real part of the complex wave number o

A aspect ratio, 4 = L/h

b imaginary part of the complex wave number o
D derivative with respect to the vertical coordi-

nate z

g gravity acceleration

h height of fluid

/ penetration length

L horizontal extent of the fluid layer
Ma  Marangoni number, Ma = Re Pr

p pressure

Pr Prandtl number, Pr = v/

Re Reynolds number, Re = Ush/v

t time

T fluid temperature

T temperature of the cold vertical wall
T temperature of the hot vertical wall
u horizontal component of the velocity
U horizontal velocity of the base flow
U, characteristic velocity

w vertical component of the velocity

X horizontal coordinate

Xo position of the end wall
z vertical coordinate

Greek symbols

o complex wave number

Pr horizontal temperature gradient

Y derivative of surface tension with respect
to temperature

n dynamical viscosity

0, temperature perturbation

0(z)  vertical dependence of the temperature
perturbation

K thermal diffusivity

v kinematic viscosity

o fluid density

a surface tension

0o reference surface tension

79(z)  vertical temperature distribution associated to
the base flow
¢(z) vertical dependence of the stream function

perturbation
V] stream function
/8 stream function perturbation

hydrothermal waves predicted to be the most dangerous
modes of instability in an unbounded fluid layer.
Numerical simulations of thermocapillary convection
developing in rectangular cavities of large horizontal
extent have essentially dealt with two-dimensional flows,
three-dimensional effects being only considered in a cu-
bic cavity [11]. In the case of low Prandtl number fluids,
Ben Hadid and Roux [12] performed calculations in a
rectangular cavity bounded by two horizontal surfaces,
either both conducting or both insulating. For low val-
ues of the Marangoni number, the fluid circulation in
the whole layer is monocellular and symmetric with re-
spect to the vertical midplane. When the Marangoni
number is increased, the apparition of recirculation rolls
is reported near the cold wall whereas near the hot wall
the viscous flow gives way to a boundary layer regime.
The number of recirculation rolls depends on the Ma-
rangoni number value and on the aspect ratio of the
fluid layer. When thermocapillarity is the only driving
mechanism, Ben Hadid and Roux calculations always
converged to a steady flow and buoyancy effects needed
to be included [13] to capture temporal oscillations in
the fluid. Considering a fluid with a higher Prandtl
number Pr = 4, Villers and Platten [14] obtained a result
opposite to Ben Hadid and Roux finding, with the ap-
parition of recirculation rolls near the hot wall and a
boundary layer regime near the cold wall, like Mund-
rane and Zebib [15] when investigating a fluid of still

larger Prandtl number Pr = 8.4. These different be-
haviors of the fluid near the vertical walls when the
Prandtl number varies were also reported by Zebib et al.
[16], for fluids of Prandtl numbers ranging between
Pr=10.05 and 50, confirming that recirculation rolls
develop near the cold wall for low Prandtl numbers and
near the hot wall for high Prandtl numbers.

Some of these numerical results have been validated
by experimental observations. To illustrate the best our
purpose we shall focus on those studies carried out in
rectangular cavities with a large extent in the streamwise
direction and a narrow one in the spanwise direction, so
as to prevent from the onset of three-dimensional in-
stability. To allow for visualization of the flow structure,
most of these experiments have been conducted in
transparent fluids which have moderate or large Prandtl
numbers. Thus, beside the numerical study mentioned
above, Villers et Platten [14] also conducted experiments
using acetone, a fluid of Prandtl number (Pr = 4) and
observed the apparition of recirculation rolls near the
hot wall. With still higher Prandtl number fluids, re-
spectively, Pr =15 and 17, De Saedleer et al. [3] and
Schwabe et al. [17] also observed the development of
several rolls near the hot wall. Moreover, De Saedleer
et al. measured the vertical velocity on the whole length
of the cavity and showed that the amplitude of the ve-
locity is exponentially decaying with distance from the
hot wall. In a larger range of Prandtl number
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(Pr = 10-30), Garcimartin et al. [4] still found the ap-
parition of an intense roll near the hot side of the cavity,
followed by several less intense rolls. When increasing
the imposed temperature gradient, these authors ob-
served that the rolls begin to oscillate and then propa-
gate from the hot side to the cold side. The important
point to notice is that this phenomenon cannot be as-
similated to the hydrothermal waves predicted by Smith
et Davis [6] in an unbounded fluid layer, which propa-
gate from the cold region to the hot region. Thus, the
dynamics generated by the lateral walls possibly affect
the instability patterns predicted for an unbounded
layer.

In most of the references cited above the lateral
boundaries were straight walls but a few of them dealt
with cylindrical walls [17]. This is also the case in [18,19]
where Favre et al. studied two fluids with very different
Prandtl numbers, respectively, silicon oil and mercury.
In their experimental device, the fluid filling a cylindrical
vessel is locally heated on the top free surface and the
base flow takes the form of a torus. For silicon oil,
Pr =10, recirculation rolls appear near the cylindrical
heater as it is also confirmed by numerical simulations.
For mercury, Pr=0.02, visualization cannot be im-
plemented and the knowledge of end circulation comes
from numerical results showing the presence of recir-
culation eddies near the cooled outer cylindrical wall.
This confirms that the change in the flow structure near
the side walls according to the value of the Prandtl
number is independent of the geometry.

An alternative approach to numerical simulations
was proposed by Laure et al. [20] who addressed the
problem of the end wall circulations in thermocapillary
flows in the case of a zero Prandtl number fluid. They
considered that sidewalls induce perturbations to the
parallel core flow, which can be decomposed into
spatial modes with complex wave numbers. The sta-
bility analysis provides the less attenuated modes and
revealed the presence of recirculation rolls near the
cold vertical wall. Their analysis was reminiscent of the
asymptotic matching procedure used by Daniels [21]
when considering the problem of end circulation for a
buoyant flow in a vertical slot with differentially heated
walls. This is a powerful approach to get insight into
the flow structure near the end walls which is not re-
stricted to thermally driven flows and has been used in
various other hydrodynamic systems. In a pioneering
work, Bye [22] described the end circulations of a
Couette—Poiseuille flow in a rectangular cavity, due to
a constant stress (surface wind) acting on the free
surface of the fluid layer. By analyzing the stability of
the base flow with respect to spatial disturbances as-
sociated to a complex wave number, Bye concluded
that recirculation rolls appear downwind while a
boundary layer regime takes place upwind. An exper-
imental investigation by Neary and Stephanoff [23] of

the shear-driven flow in an open cavity confirms that a
recirculation roll develops in the downstream-third of
the cavity.

Considering flows with curved streamlines, Normand
et al. [24] demonstrated the existence of recirculation
eddies in the Taylor-Dean flow between two horizontal
coaxial cylinders with a partially filled gap. They found
that when the two cylinders are counter-rotating, recir-
culation rolls develop on both free end surfaces whereas
the rolls appear only near one of the free surfaces when
the cylinders are co-rotating.

The present contribution [25] is an extension of Laure
et al. analysis [20] to establish the influence of the
Prandtl number value on the location of the recircula-
tion eddies that have been observed either near the hot
or the cold sidewalls in thermocapillary-driven flows.
We shall focus on the distortions to the steady parallel
core flows before the onset of temporal modes of in-
stability and do not intend to describe the influence of
the lateral walls on the instability pattern.

2. Spatial modes analysis

We consider an incompressible fluid filling a rec-
tangular cavity of height # and of length L > A, boun-
ded below by a rigid surface and above by a free surface
(see Fig. 1, where the core flow velocity is also repre-
sented). The top and bottom boundaries are considered
insulating, as it is the case in most experimental studies
and numerical simulations.

Introducing Cartesian coordinates, Ox will denote
the horizontal axis, and Oz the vertical upward axis. The
fluid layer is bounded laterally by two isothermal verti-
cal walls maintained at different temperatures, re-
spectively, T=Ty at x=0 and T=T7, > T; at x=L.
The horizontal temperature gradient S = (7} — Tp)/L
would produce a temperature distribution 7 — 7y = firx
in a fluid at rest.

We consider a thin fluid layer where thermocapillary
forces dominate buoyancy forces. Thus, the density p of
the fluid is taken constant while linear variations of the
surface tension ¢ with the fluid temperature 7" are con-
sidered according to the law

J:UO_’V(T_TO)?

0 L

Fig. 1. Geometry of the fluid layer and core flow velocity uy(z).
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where y = —do/dT is positive, as it is the case for most
ordinary fluids, and ¢y = o(7). The thermocapillary
forces induced by the applied temperature gradient drive
the fluid on the free surface from the hot areas toward
the cold areas, resulting in a fluid circulation into the
whole layer.

The velocity i = (u,w) and temperature 7 in the fluid
satisfy the conservation equations for mass, momentum
and energy which read

V.ii=0 (1)
O i ¥)i=—L Sprgrotu (2)
o +u- u= P 'p+ &+ vAi,

(ag )TzKAT, (3)

where p is the fluid pressure, v the kinematic viscosity
and x the thermal diffusivity. We shall distinguish two
regions in the fluid, the core region where the velocity
has only one component u = Uy(z) in the x-direction
and two end regions where the vertical component of the
velocity w can no longer be neglected.

In the core region, the momentum equation (2) sim-
plifies in D*U, = 0, where D = d/dz denotes the deriv-
ative with respect to the vertical coordinate. On the free
surface at z = A, the balance between the viscous tan-
gential stress and the thermocapillary force expresses as

nDUy = —ypr.

Taking & as the typical length scale, this relation pro-
vides the typical velocity scale U; = yfrh/n so that the
base flow velocity is written Uy = Usuy. Using the
boundary condition on the rigid bottom plate 1y =0,
and the flux conservation through any vertical plane
[01 updz = 0, the base flow velocity reads in a non-di-
mensional form

z(3z = 2)

Ll()(Z) = — 4

In Eq. (3), the convective heat transport (i - 7)7' o Pty
should be balanced by a vertical temperature distribu-
tion 19(z) that adds to the horizontal temperature dis-
tribution. Taking frh as the typical scale for the
temperature, then T — T, =x+ Marto(z), where
Ma = Ush/x is the Marangoni number. Eq. (3) becomes

= D1, to be solved with the boundary conditions
Dty=0, on z=0 and z=1, leading to the vertical
temperature gradient

2z — 1).

D’EOZ— 4

The plane-parallel flow approximation is only valid in
the core of the fluid layer far from the isothermal
vertical walls confining the fluid laterally where the
flow is distorted and becomes two-dimensional.

Therefore, we can introduce the stream function y(x, z)
such that

oy

u:E and w=-——

The deformations of the core flow due to the vertical
walls at x =0 and x =4 where 4 = L/h is the aspect
ratio of the cavity, are analyzed by considering that the
lateral walls induce a perturbation in the fluid, charac-
terized by a stream function ;, and a temperature 0,
decaying spatially when approaching the parallel core
flow solution. The perturbations are sought in the form

Y1 = $(z) expla(x — xo)],
0, = 0(z) exp[a(x — xp)].

According to the location of the wall we are studying the
influence on the base flow, x, will take two different
values: when looking for the behavior of the fluid close
to the cold side wall we shall consider x, = 0 with x > 0
and ¥, — 0 when x — oco. Whereas close to the hot side
wall we shall consider xy =4 with x —xyp <0 and
Y, — 0 when x — xy — —o0.

The wave number o = a + ib is a complex quantity.
Its real part « is related to the spatial attenuation rate of
the perturbations when going away from the vertical
walls, and is equal to the inverse of the penetration
length / of the perturbations |a| = 1//. The exponential
spatial decay of the perturbations was detected in ex-
periments by De Saedleer et al. [3] through measure-
ments of the vertical velocity near the hot wall. The
imaginary part b is related to the wavelength of the
perturbation 1 = 2n/b. Moreover, the sign of the real
part of « indicates the location of the perturbation: since
the disturbances due to the vertical walls must decrease
when approaching the core of the cavity, eigenvalues o
with positive real parts are related to the behavior of the
fluid in the vicinity of the hot wall located at x = 4,
whereas eigenvalues of negative real parts indicate the
behavior of the flow close to the cold wall at x = 0.

The vertical dependence of the perturbations, ¢(z)
and 6(z), are solutions of the system obtained after
linearization of Egs. (2) and (3) around the core flow
solution

(D* + )’ ¢p = aRelug(D* + o) — ug] 9, )
(D* + o2)0 = Ma[o(uy0 — Mat)d) + D¢, (5)
where Re = Ush/v is the Reynolds number, Ma = Re Pr is
the Marangoni number and Pr=v/k is the Prandtl

number. The associated boundary conditions are, for
the stream function:

¢=0, Dp=0 atz=0,

6
=0, D’p=—af atz=1, (6)

and for the temperature: DO =0 onz=0 and z=1.
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For a vanishing Reynolds number (and thus simul-
taneously the Marangoni number), the spectrum of ei-
genvalues o is found to be the same whatever is the value
of the Prandtl number. The temperature, solution of

(D> +22)0 = 0, (7)

leads to the eigenvalues o, = nm. The stream function,
solution of the Stokes equation (D?+o2)’¢ =0, is
coupled to the temperature through the boundary con-
dition, D*¢ = —af, thus satisfying an inhomogeneous
differential system. The stream function is the sum of
two contributions: one is a particular solution that
shares a common eigenvalues spectrum with the tem-
perature. The other contribution, independent of the
temperature, satisfies the homogeneous boundary con-
dition D’¢ = 0 on z = 1 and it evolves according to its
own eigenvalue spectrum with «, solutions of

sin(20) = 2a. (8)

We shall see in the next section how this two indepen-
dent sets of eigenvalues evolve when the Reynolds
number is increased. The results will be presented in
different subsections according to the value of the
Prandtl number.

2.1. Vanishing Prandtl number

Let us first consider the case of a fluid of high thermal
conductivity compared to its viscosity (Pr = 0).

The evolution of the real part a of the eigenvalues o
when the Reynolds number varies is represented in Fig.
2. Dashed lines denote real eigenvalues while solid lines

10.0

— -

-
——
——

50 /N

-
-~
———
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0.0

0.0 200.0 400.0 600.0
Re

Fig. 2. Evolution of the real parts @ of the eigenvalues o vs the
Reynolds number Re, in the case Pr = 0. Solid lines: complex
eigenvalues; dashed lines: real eigenvalues. The behavior near
the hot (respectively, cold) wall is related to @ > 0 (respectively,
a < 0).

denote complex eigenvalues. For Re =0, the starting
points are the “thermal” eigenvalues «, = nm, which
have been drawn for the integer values, n = +1 and 2,
and the “hydrodynamic” eigenvalues solution of Eq. (8),
whose two lowest values are

o = +3.749 +i1.384,
% = +6.950 £1i1.676.

When the Reynolds number is increased, the thermal
eigenvalues remain constant and equal to o, = nm be-
cause the temperature equation (5), reduces to a purely
conductive heat transfer equation (7) in the case
Ma = RePr = 0. On the contrary the stream function
equation (4) depends on Re and its spectrum evolves
when the Reynolds number is increased. Each of the
first two complex hydrodynamic eigenvalues with a
positive real part splits into two real eigenvalues
whereas the hydrodynamic eigenvalue with a negative
real part remains complex. Since the real part of the
eigenvalues is proportional to the inverse of the pene-
tration length of the disturbances, the flow structure
close to the vertical walls will be governed by the ei-
genvalues of smallest real parts. It is shown in Fig. 2
that the first hydrodynamic complex eigenvalue starting
with a real part a = 3.8 for Re = 0, splits into two real
eigenvalues for Re = 15, and then the lower eigenvalue
remains real and tends towards zero. The hydrody-
namic eigenvalue with a negative real part starting
from a = —3.8 at Re = 0, remains complex and its real
part slowly decreases when the Reynolds number is
increased. The interpretation is that recirculation rolls
appear in the vicinity of the cold wall (¢ <0, b #0)
and penetrate further and further in the core of the
fluid layer when the imposed temperature gradient is
increased, whereas a boundary layer regime takes place
close to the hot wall (@ > 0, b =0) replacing the vis-
cous flow existing for Re — 0, with a thickness layer
I =1/a. These results agree with numerical results
obtained for fluids of small Prandtl number by Ben
Hadid and Roux [12], Favre et al. [19], and Zebib et al.
[16], who reported on the development of recirculation
rolls near the cold vertical wall.

The case of a zero Prandtl number fluid was pre-
viously investigated by Laure et al. [20] when the two
horizontal surfaces are conducting. Thus, the thermo-
capillary boundary condition D*¢p = —af) at z=1 re-
duces to D’¢ =0, and the two sets of eigenvalues,
thermal and hydrodynamic, become independent. The
temperature disturbances in the conducting case are
0(z) = sinnnz instead of 0(z) = cosnmz in the insulating
case, the thermal eigenvalues being o, = nm in both
cases. This result also agrees with the assertion by Ben
Hadid and Roux [12] that conducting or insulating
boundary conditions lead to the same end structures
when Pr=0.
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2.2. Infinite Prandtl number

Fluids of large viscosity compared to the thermal
conductivity (fluid of infinite Prandtl number) have not
received as much attention as the opposite situation
(Pr=0) at least from the numerical point of view, but
there are many experimental results to compare with.
We shall consider the Prandtl number going to infinity
while the Marangoni number remains finite so that the
Reynolds number tends towards zero.

In Fig. 3 are reported the variations of the real part a
of the eigenvalues o as functions of the Marangoni
number which is the relevant governing parameter for
fluids of infinite Prandtl number. On the contrary to the
case of a zero Prandtl number fluid, both thermal and
hydrodynamic eigenvalues evolve with the Marangoni
number. The behavior of the eigenvalue spectrum in the
case Pr = oo is opposite to the case Pr = 0: the hydro-
dynamic eigenvalue with the lowest positive real part
remains complex and its real part decreases when the
Marangoni number is increased, whereas the first neg-
ative thermal eigenvalue is tending towards zero.
Therefore, the end flow structure corresponds to the
development of recirculation rolls near the hot wall and
to the growth of a boundary layer regime close to the
cold wall. This conclusion remains true until the Ma-
rangoni number reaches the critical value Ma, = 575, for
which the positive real part of the lowest hydrodynamic
eigenvalue vanishes, the corresponding imaginary part
being equal to » = 4.8. This means that the penetration
length of the recirculation rolls becomes infinite, and
that an instability in the form of transverse stationary
rolls of dimensionless wave number » = 4.8 can spread
over the whole fluid layer. However, this is not the most

20.0

15.0 F - e ]

100 »

e o e

L= 7 ]
5.0 /

D’\
0.0

—

0.0 500.0 1000.0
Ma

Fig. 3. Evolution of the real parts a of the eigenvalues o vs the
Marangoni number Ma, in the case Pr = co. Solid lines: com-
plex eigenvalues; dashed lines: real eigenvalues. The behavior
near the hot (respectively, cold) wall is related to a > 0 (re-
spectively, a < 0).

critical instability for an unbounded fluid layer. Indeed,
Smith and Davis [6] found that a wave propagating
along the direction of the imposed temperature gradient,
can develop when the Marangoni number reaches the
critical value Ma. = 399, lower than the threshold for
stationary rolls. This result valid for an infinite fluid
layer, is likely to be modified by the presence of vertical
end walls that prevents or delays wave propagation in
the streamwise direction [26].

Villers and Platten computations [14] emphasized on
the temporal behavior of the flow in finite or infinite
cavity: in a closed cavity, they obtained a complex os-
cillatory behavior which can be decomposed in three
main stages along a period. The first stage is charac-
terized by the emission of a vortex traveling from the hot
wall to the cold wall. Afterwards, the flow stabilizes in a
regular multicellular pattern which is rapidly destroyed.
Finally, a slowing down in the cold part of the cavity
reinforces the initial hot vortex. They also considered
periodic vertical boundary conditions in order to simu-
late the case of an infinite horizontal fluid layer and
observed traveling rolls for a threshold value of the
Marangoni number much lower than the threshold for
oscillatory flow in a closed cavity. Despite some dis-
crepancy in the value of the frequency they considered
that their non-linear simulations confirm the linear
stability results of Smith and Davis [6].

More recently, the influence of the side walls on the
instability pattern has been considered by applying the
concept of convective, absolute and global instability
[27]. The main idea is that the global instability of
spatially homogeneous systems is provided by virtual
reflections of convectively unstable waves from distant
lateral walls. For pure thermocapillary flows, Priede and
Gerbeth [27] conclude that the threshold of the global
instability is only slightly higher than that of the con-
vective instability. For large Prandtl number, the effect
of the buoyancy is to enhance the global instability
threshold above the convective one.

Consideration of the two extreme cases, Pr = 0 and
Pr — o0, has shown that the location of the recirculation
rolls strongly depends on the value of the Prandtl
number. In order to understand how the transition from
recirculation rolls located near the cold wall for Pr =0,
to recirculation rolls developing near the hot wall for
Pr = oo occurs, we shall consider intermediate values of
the Prandtl number, varying between Pr = 0.01 and 100.

2.3. Intermediate values of the Prandtl number

The eigenvalues spectrum for a Prandtl number
Pr =100, presented in Fig. 4(a) looks very similar to the
case Pr = oo presented in Fig. 3: recirculation rolls de-
velop near the hot vertical wall whereas a boundary
layer regime grows near the cold wall. A fluid of Prandtl
number Pr = 100 is less stable with respect to stationary
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Fig. 4. Evolution of the real parts a of the eigenvalues o vs the Marangoni number Ma: (a) Pr = 100; (b) Pr = 1. Solid lines: complex
eigenvalues; dashed lines: real eigenvalues. The behavior near the hot (respectively, cold) wall is related to a > 0 (respectively, a < 0).

transversal disturbances than a fluid of infinite Prandtl
number, and the recirculation rolls spread over the
whole fluid layer when the Marangoni number reaches
the critical value Ma, = 547, lower than in the case
Pr = co. The wave number keeps the same value b = 4.8
as for Pr = oco. For Pr =10 and 4, the eigenvalue spec-
trum remains qualitatively unchanged except that the
fluid becomes more and more unstable when its Prandtl
number decreases: the instability threshold correspond-
ing to the development of stationary rolls is reached for
Ma, =408 with b=4.7 in the case Pr= 10, while
Ma. = 320, b =4.3 in the case Pr = 4.

For a Prandtl number equal to one, the behavior of
the fluid near the cold wall becomes more intricate than
for fluids of higher Prandtl numbers. The eigenvalue
spectrum is represented in Fig 4(b). Recirculation rolls
are still developing near the hot wall and spread all over
the fluid layer when the Marangoni number reaches the
value Ma, = 220 associated to a wave number value
b = 2.2, while near the cold wall a competition between
a boundary layer regime and the apparition of recircu-
lation roll takes place when the Marangoni number is
increased. It is worth noticing that just before the
threshold at Ma, = 220, recirculation rolls exist on both
sides of the cavity.

The eigenvalues spectrum for fluids of Prandtl num-
bers higher than one bear a close resemblance with the
one obtained for an infinite Prandtl number. In partic-
ular, damped recirculation eddies are predicted to ap-
pear near the hot end wall provided that Ma < Ma.. This
behavior agrees with experimental observations and
numerical simulations by De Saedleer et al. [3], Schwabe
et al. [17], Villers and Platten [14], Favre et al. [18],
Garcimartin et al. [4] and Zebib et al. [16], who observed
the apparition of recirculation rolls near the hot wall.

We shall now investigate the case of fluids with
Prandtl numbers smaller than one. This is first illus-
trated in Fig. 5(a) for a Prandtl number Pr = 0.01. The

lower part of the spectrum corresponding to eigenvalues
with negative real parts is quite similar to the same part
in the case Pr = 0, leading to recirculation rolls devel-
oping near the cold wall, while the upper part associated
to eigenvalues with positive real parts looks very differ-
ent. First of all thermal eigenvalues (starting from nmn
when Re = 0) are no more constant but evolve when the
Reynolds number is increased because as soon as Pr # 0
the advection term in the heat equation triggers the
coupling between the temperature and the stream func-
tion in Eq. (5). We observe that thermal eigenvalues
never cross hydrodynamic eigenvalues (starting from o
solution of sin(2ax) = 20 when Re = 0), but follow two
distinct behaviors: either repulsion or merging. In par-
ticular the thermal eigenvalue starting from n decreases
suddenly when the Reynolds number reaches the value
Re =15 as to avoid the above real eigenvalue. This
second eigenvalue belongs to the lower branch of the
two real hydrodynamic eigenvalues issued from the
complex hydrodynamic eigenvalue starting from
o =3.7+1l1.4. The eigenvalue tending towards zero is
still real, though it is now of the thermal type for
Pr=0.01, while it was of the hydrodynamic type for
Pr =0, and thus a boundary layer regime develops near
the hot wall in both cases. Merging also occurs for
eigenvalues of higher real parts: the hydrodynamic
eigenvalue starting from « = 7.0 +11.7, splits into two
real eigenvalues when Re = 53, and the lower branch
merges with the thermal eigenvalue starting from 2r for
Re = 0. Thus, the eigenvalue created by this process can
no longer be called hydrodynamic, even though it is
complex.

Although the eigenvalues spectra for the cases Pr = 0
and 0.01, are different the conclusions concerning the
behavior of the flow near the vertical walls are the same.
This is no longer true when still increasing the Prandtl
number, and especially for the case Pr=0.1 as illus-
trated in Fig. 5(b). A succession of couplings between
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Fig. 5. Evolution of the real parts a of the eigenvalues o vs the Reynolds number Re: (a) Pr = 0.01; (b) Pr = 0.1. Solid lines: complex
eigenvalues; dashed lines: real eigenvalues. The behavior near the hot (respectively, cold) wall is related to a > 0 (respectively, a < 0).

thermal and hydrodynamic eigenvalues are observed.
The  hydrodynamic eigenvalue  starting from
o = 3.7 +1l.4 at Re = 0, soon experiences a first splitting
followed by a quick recombination and it remains
complex until the value Re = 280, at which it splits into a
set of two real eigenvalues. Then, the lower branch of
this set merges at Re = 320, with the thermal eigenvalue
coming from o = m at Re = 0, giving rise to a complex
eigenvalue. Therefore, the behavior of the fluid near the
hot wall consists in a boundary layer regime for small
values of the Reynolds number and a transition to re-
circulation rolls occur when Re = 320. Near the cold
wall, (¢ < 0) the apparition of recirculation rolls is still
predicted. Thus, we infer that recirculation rolls develop
on both sides of the cavity for Reynolds number values
higher than Re = 320.

We can now summarize the results: recirculation rolls
develop only near the hot wall for fluid of high Prandtl
numbers (Pr>4), only near the cold wall for low
Prandtl numbers (0 <Pr<0.01), and develop on both
sides for intermediate Prandtl numbers (0.1 <Pr<1).

3. Conclusion

The present analysis provides a description of the
end structures of a thermocapillary flow in an extended
horizontal liquid layer. It involves a matching proce-
dure between the core flow solution and a solution
valid near the vertical walls. This approach is equiva-
lent to performing the spatial stability analysis of the
velocity profile valid in the core flow. The disturbances
created by the vertical walls are characterized by a
complex wave number and the nature of the less at-
tenuated mode gives information on the end flow
structure. According to its sign the real part, a, of the

wave number (which is also the inverse of the spatial
attenuation rate) describes the matching near the hot
(a > 0) or the cold wall (a < 0). When it exists, the
associated imaginary part reveals the existence of
damped periodic structures which are known as recir-
culation rolls or eddies. Our analysis shows the evo-
lution of the wave number as a function of the
Reynolds or Marangoni number for different values of
the Prandtl number. For large or small Prandtl num-
bers there is a strong asymmetry between the hot wall
and the cold wall. For large Prandtl numbers the wave
number attached to the hot wall is complex and signals
the presence of damped recirculation eddies. This is the
reverse situation which prevails for small Prandtl
numbers. For intermediate values of the Prandtl
number, there is always a range of Reynolds number
values for which the flow is symmetrical with eddies
near the hot corner and the cold corner.

Our results are in agreement with previous exper-
imental and numerical findings and they are particularly
suitable to describe the damped transverse rolls reported
in [3]. Among the previous studies, several of those de-
voted to large Prandtl number fluids [4,14], have em-
phasized on the role played by the strong vortex near the
hot wall for further destabilization of the flow. As soon
as an oscillatory state is reached, the same scenario is
reported which consists in the emission of a vortex from
the hot to the cold wall. It seems unlikely that this type
of oscillatory state could be explained by the onset of a
global instability of the homogeneous core flow. We
preferably agree with the assertion by Zebib et al. [16]
that instabilities in cavities are more likely to be con-
nected with the strong corner flow than with profiles of
the type considered by Smith and Davis [6].

At this stage, more work is needed to completely
understand the stability problem of the damped recir-
culation rolls.
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